Propellant Depots and a Reusable Cislunar Transportation Architecture

May 28, 2010

NSS ISDC 2010
May 27-31, 2010

Dallas Bienhoff
Manager, In-Space & Surface Systems
703-872-4004; dallas.g.bienhoff@boeing.com

No License Required
This document does not contain technical data within the definition contained in the International Traffic in Arms Regulations (ITAR) and the Export Administration Regulations (EAR), as such is releasable by any means to any person whether in the U. S. or abroad. The Export Compliance log number for this document is [Export Approval # RBE2272-NT (assigned IAW PRO-4527,PRO 3439).]
A Depot-Enabled Reusable Cislunar Architecture: Matched Impedance – What is Launched is Landed

Personnel Cargo Propellant Depot Tug

g-oriented Crew Module

Cargo

Zero-g Crew Module

Personnel Cargo

Lander Personnel Propellant

Personnel Propellant Depot Tug
LEO Depot Deployed
ARTV and DPM Deployed to LEO Depot

ARTV

DPM

DPM

Zero-g Crew Module

DPM
SRTV with g-Oriented Crew Module Deployed to EML1 Depot
Lunar Surface Shuttle Deployed to EML1

Personnel
Cargo
Propellant
DPM

Personnel
Cargo

DPM

LSS
g-oriented
Crew Module

Zero-g
Crew Module

Personnel
Propellant
DPM

Lander
Personnel
Propellant

May 27-31, 2010
A Depot-Enabled Reusable Cislunar Architecture: Matched Impedance – What is Launched is Landed
Systems Comprising an Impedance Matched Cislunar Architecture

- Low-cost launch provider: Space X Falcon 9-3.6 shown
- Personnel Modules: 0-g and g oriented
- Propellant Carrier and Depot Propellant Module
- Space Transfer Stage: EML1 to Perilune delivery LOx/LH
- 2 Modular Propellant Depots
- Aerobraked Reusable Transfer Vehicle: GTO and/or GEO delivery LOx/LH
- Lunar Lander: Perilune to Surface LOx/LH
A LEO Propellant Depot Operational Concept: Missions Not Constrained by Launch Capability

Low-cost launch provider
Space X
Falcon 9-3.6 shown

Reenter & Reuse

Interplanetary Trajectories

Earth Orbit

Lunar Orbit

RPC

ARTV

EDS/LSAM
Operational Flexibility Enabled With ISRU

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTV Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>ARTV Back</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>DPM Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>DPM Back</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>SRTV</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Back</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

- Lunar propellant can be provided for none, one, or all mission legs
- Selection is dependent on
 - Price at depot
 - Operational failures
 - Mission efficiency (prop/payload; prop needed/prop used)

\(^\d\) only applies when DPM not included in architecture
Architecture Propellant Requirements Defined by Source and Mission Type

- Stacked columns are propellant used to move payload
 - Blue is Earth-supplied; Green is Moon-supplied
- Stacked symbols are propellant required to conduct mission
 - Square is Earth-supplied; Round is Moon-supplied
- Constellation propellant used shown for comparison
- 100% Moon-supplied requires most total propellant

20 t to Moon 25 t from & 3 t to Moon 5 t Roundtrip LEO to Moon
What if DPM Deleted From Architecture?

- Lunar propellant can be provided for none, one, or all mission legs
- Selection can be dependent on
 - Price at depot
 - Operational failures
 - Mission efficiency (prop/payload; prop needed/prop used)

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>A</th>
<th>B/C</th>
<th>B’/C’</th>
<th>D/E</th>
<th>D’/E’</th>
<th>F</th>
<th>F’</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTV Out</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>ARTV Back</td>
<td></td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>E</td>
<td>M</td>
<td>E</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>SRTV</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Out</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Back</td>
<td></td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>
Minor Propellant Reduction if DPM Deleted

- Stacked columns are propellant used to move payload
 - Blue is Earth-supplied; Green is Moon-supplied
- Stacked symbols are propellant required to conduct mission
 - Square is Earth-supplied; Round is Moon-supplied
- Constellation propellant used shown for comparison
- 100% Moon-supplied requires most propellant for out and back
What if SRTV Deleted From Architecture?

- Lunar propellant can be provided for none, one, or all mission legs
- Selection can be dependent on
 - Price at depot
 - Operational failures
 - Mission efficiency (prop/payload; prop needed/prop used)

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>A</th>
<th>B/D</th>
<th>C/E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTV Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>ARTV Back</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>DPM Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>DPM Back</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Out</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Back</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>
Significant Propellant Increase if SRTV Deleted

- Stacked columns are propellant used to move payload
 - Blue is Earth-supplied; Green is Moon-supplied
- Stacked symbols are propellant required to conduct mission
 - Square is Earth-supplied; Round is Moon-supplied
- Constellation propellant used shown for comparison
- Propellant needs approximately double without SRTV
What if DPM and SRTV Deleted From Architecture?

- Lunar propellant can be provided for none, one, or all mission legs
- Selection can be dependent on
 - Price at depot
 - Operational failures
 - Mission efficiency (prop/payload; prop needed/prop used)

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>A</th>
<th>B/C/D/E</th>
<th>B’/C’/D’E’</th>
<th>F</th>
<th>F’</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTV Out</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
</tr>
<tr>
<td>ARTV Back</td>
<td></td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>E</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Out</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LSS Back</td>
<td></td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>
Significant Propellant Increase if DPM & SRTV Deleted

- Stacked columns are propellant used to move payload
 - Blue is Earth-supplied; Green is Moon-supplied
- Stacked symbols are propellant required to conduct mission
 - Square is Earth-supplied; Round is Moon-supplied
- Constellation propellant used shown for comparison
- Propellant needs approximately double without SRTV and DPM
Lunar Propellant @ < 80% ETO Propellant Cost Reduces Cost for all Missions

- 14% savings if E-to-M does not use DPM
- Roundtrip mission cost independent of DPM
- 8-9% savings for roundtrip missions if prop costs are equal
- 25% savings if M-to-E uses DPM
ARTV Gains 7100 kg if 3500 kg DPM Deleted

<table>
<thead>
<tr>
<th></th>
<th>With DPM</th>
<th>Without DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inert</td>
<td>Prop</td>
</tr>
<tr>
<td>Inert</td>
<td>5,774</td>
<td>39,957</td>
</tr>
<tr>
<td>Prop</td>
<td>1,733</td>
<td>1,733</td>
</tr>
<tr>
<td>Total</td>
<td>3,301</td>
<td>18,706</td>
</tr>
<tr>
<td>Inert</td>
<td>12,479</td>
<td>49,917</td>
</tr>
<tr>
<td>Prop</td>
<td>23,287</td>
<td>110,313</td>
</tr>
<tr>
<td>Total</td>
<td>22,445</td>
<td>114,765</td>
</tr>
</tbody>
</table>
50 t LEO and 70 t EML1 Depots Needed for 25 t Payload Reusable Cislunar Architecture

- SRTV is a critical architecture element
- ISRU reduces EML1 depot propellant needs ~25%
This Depot-Enabled Cislunar Architecture...

- Matches surface payload capability to ETO launch capability
- Uses path-specific transportation systems
- Employs reusable Space transportation systems
- Incorporates propellant depots at payload transfer nodes
- Shows SRTV is key to minimizing propellant use
- Needs lunar propellant costs to be <80% ETO propellant cost